NEW SCHEME

Reg. No. 4NMLEC 0509

First Semester M.Tech. Degree Examination, January/February 2006 LDE/LBI/LDC/LEC

Linear Algebra

Time: 3 hrs.)

(Max.Marks: 100

Note: Answer any FIVE full questions.

1. (a) Given,

$$A = \begin{pmatrix} 1 & 2 & -2 & -4 & 1 \\ 2 & 4 & -3 & -6 & 1 \\ 3 & 6 & -3 & -6 & 1 \\ 4 & 8 & -4 & -8 & 1 \\ 5 & 10 & -12 & -24 & 8 \end{pmatrix}$$

1

Find the following:

- The row reduced echelon from of A.
- The row rank and nullity of A.
- iii) Find the general solution of the system Ax=0.
- iv) Find a basis for the row space of A.

(15 Marks)

- (b) If W_1 and W_2 are subspaces of a vector space V over a field F show that W_1+W_2 is also a subspace of V. (5 Marks)
- **2.** (a) Find the LU decomposition with $l_{ii}=1$ for the matrix

$$A = \begin{pmatrix} 2 & 1 & 1 & -1 \\ 4 & 5 & 4 & -1 \\ -4 & 1 & 4 & 4 \\ 6 & -3 & 3 & 1 \end{pmatrix}$$

(10 Marks)

(b) Show that the polynomials of degree at most 3 with real coefficients is a vector space over the field of real numbers. (10 Marks)

3. (a) Let
$$T:C^2\to C^2$$
 be defined as $T\begin{pmatrix}x_1\\x_2\end{pmatrix}=\begin{pmatrix}3x_1+4x_2\\x_1-x_2\end{pmatrix}$ Let $B_1=\left\{v_1=\begin{pmatrix}1\\0\end{pmatrix};\ v_2=\begin{pmatrix}0\\1\end{pmatrix}\right\};\ B_2=\left\{e_1=\begin{pmatrix}1\\i\end{pmatrix}\ ;\ e_2=\begin{pmatrix}-i\\2\end{pmatrix}\right\}$

where $i = \sqrt{-1}$. Answer the following:

- i) is T a linear operator on C^2 ?
- ii) Find $\left[T
 ight]_{B_1}$ and $\left[T
 ight]_{B_2}$
- III) What is the relation between $\left[T
 ight]_{B_1}$ and $\left[T
 ight]_{B_2}$?

(12 Marks)

Contd.... 2

- (b) Let $T:V \to W$ be a linear transformation and $B=\{v_1,v_2,...,v_k\}$ be a basis for
 - If T is one-one show that $Tv_1,\ Tv_2,...Tv_L$ is a limearly independent set in W.
 - ii) If T is onto show that $Tv_1, \ Tv_2,, Tv_k$ spans W. (3 Marks

4. (a) Let

$$A = \begin{pmatrix} 1 & 3 & 3 \\ 3 & 1 & 3 \\ -3 & -3 & -5 \end{pmatrix}$$

Answer the following questions:

Find the characteristic and minimal polynomials of A.

245

- li) Is A diagonaliza<u>bl</u>e?
- III) Find projections E_1 and E_2 such $E_1+E_2=I$, $\lambda_1E_1+\lambda_2E_2=A$, $E_1E_2=0_{3\times 3}=E_2E_1$, where λ_1 and λ_2 are the eigen values of A.(15 Marks)
- **(b)** Let V be an n-dimensional vector space over C. Let $T:V\to V$ be a linear operator. Prove that if T is both diagonalizable and nilpotent, then T=Z, the zero operator.
- **5.** (a) Let $T: C^3 \to C^3$ be defined as

$$T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4x_1 - 2x_2 + 2x_3 \\ -x_1 + 3x_2 + x_3 \\ x_1 - x_2 + 5x_3 \end{pmatrix}$$

$$If W_1 = \left\{ x = \begin{pmatrix} \alpha \\ \alpha \\ 0 \end{pmatrix}; \ \alpha \in C \right\}, \ W_2 = \left\{ y = \begin{pmatrix} \beta \\ \gamma \\ \beta + \gamma \end{pmatrix}; \ \beta, \gamma \in C \right\},$$

show that W_1 and W_2 give a T-invariant direct sum decomposition of \mathbb{C}^3 .

(10 Marks)

(b) Given that

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & -1 & -1 & 1 \\ -1 & 1 & 1 & 0 \\ 0 & -0 & 0 & 0 \end{pmatrix}$$

is a nilpotent matrix, determine a matrix P such that $P^{-1}AP$ is in Jordan canonic form. (10 Marks)

6. (a) Given the linear operator $T: C^4 \to C^4$ defined as

$$T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2x_1 + 6x_2 + 2x_4 \\ 2x_1 + 6x_2 - 2x_3 + 2x_4 \\ -2x_1 + 2x_2 + 4x_3 \\ 6x_1 - 6x_2 - 6x_3 + 8x_4 \end{pmatrix}$$

If the characteristic polynomial is given by $c(\lambda)=(\lambda-8)^2(\lambda-2)^2$, and that the eigen spaces of $\lambda_1=8$ and $\lambda_2=2$ respectively are

$$W_1 = \left\{ x = egin{pmatrix} lpha \ lpha \ 0 \ 0 \end{pmatrix}; \ lpha \in C
ight\}, \ W_2 = \left\{ y = egin{pmatrix} eta \ 0 \ eta \ 0 \end{pmatrix}; \ eta \in C
ight\}$$

Find:

- The Jordan from of T.
- Ii) An ordered basis B for C^4 such that $[T]_B$ is in Jordan form.
- iii) A matrix P such that $P^{-1}[T]_B P$ is in Jordan canonical form.

(15 Marks)

- (b) If A is a 7 x 7 nilpotent matrix with minimal polynomial λ^4 , what are the possibilities for the Jordan canonical form? (5 Marks)
- 7. (a) Given

$$A = \begin{pmatrix} 1 & 3 & 5 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 3 & 3 \end{pmatrix}, \ b = \begin{pmatrix} 3 \\ 5 \\ 7 \\ -3 \end{pmatrix}$$

determine

- i) a QR factorization of A and hence
- ii) the least-squares solution of Ax = b.

(12 Marks)

- (b) Let A be a real $m \times n$ matrix. Show that the Null spaces of A and A^T A are equal, where A^T denotes the transpose of the matrix A. (8 Marks)
- **8.** (a) Find the maximum value of a function $Q(x_1, x_2) = 5x_1^2 + 5x_2^2 2x_1x_2$, subject to the constraint $x_1^2 + x_2^2 = 1$. Determine a vector $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ for which the maximum is attained.
 - (b) Find a singular value decomposition of

$$A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix}$$

(14 Marks)

METERIAL DEFT

M.Tech. Degree Examination, Dec.08/Jan.09

3

Linear Algebra

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions

1 a. Solve the following system of equations:

$$x + 2y - 3z = 1$$

$$2x + 5y - 8z = 4$$

$$3x+8y-13z=7$$
 by Gauss elimination method.

(06 Marks)

b. Reduce the following matrix:

$$\begin{bmatrix} 1 & 2 & -3 & 1 & 2 \\ 2 & 4 & -4 & 6 & 10 \\ 3 & 6 & -6 & 9 & 13 \end{bmatrix}$$
 to Row reduced Echelon form.

(06 Marks)

[3 6 -6 9 13]

c. Find the LU factorization with $l_{ii} = 1$ for the matrix $A = \begin{bmatrix} 2 & 1 & 1 & -1 \\ 4 & 5 & 4 & -1 \\ -4 & 1 & 4 & 4 \\ 6 & -3 & 3 & 1 \end{bmatrix}$. (08 Marks)

2 a. Express M as a linear combination of the matrices A, B, C where

$$M = \begin{bmatrix} 4 & 7 \\ 7 & 9 \end{bmatrix}, A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 \\ 4 & 5 \end{bmatrix}$$

(06 Marks)

b. Prove that the set $W = \{(x,y,z)/x-3y+4z=0\}$ of the vector space $V_3(R)$ is a subspace of $V_3(R)$.

c. Prove that the inverse of two subspaces of a vector space V is a subspace of V. Is it true in the case of union of two subspaces? Justify your answer. (07 Marks)

b. Prove that any two bases of a finite dimensional vector space V have the same number of elements. (06 Marks)

c. Let $T:U \rightarrow V$ be a linear map. Then prove that

- i) R(T) is a subspace of V.
- ii) N(T) is a subspace of U.

iii) T is 1-1 iff the null space (N(T)) is a zero subspace.

(08 Marks)

4 a. Prove that $T:U \to V$ of a vector space U to a vector space V over the same field F is a linear transformation if and only if $\forall \alpha, \beta \in U$ and $C_1, C_2 \in F$

$$T(C_1\alpha + C_2\beta) = C_1T(\alpha) + C_2T(\beta)$$

b. Find the eigen space of the linear transformation

 $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

T(x, y, z) = (2x+y, y-z, 2y+4z)

(07 Marks)

(06 Marks)

c. Find the linear transformation relative to the bases,

B₁ = {(1,1),(-1,1)}, B₂ = {(1,1,1),(1,-1,1)(0,0,1)} given the matrix A_T =
$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -1 & 3 \end{bmatrix}$$
. (07 Marks)

- Verify Rank-nullity theorem for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined ι 5 T(x,y,z) = (x+y,x-y,2x+z). (06 Marks)
 - Let T be a linear transformation from a vector space U to a vector space V then T is non singular iff T is 1-1.
 - $T: \mathbb{R}^2 \to \mathbb{R}^2$ is given by T(x,y) = (4x 2y, 2x + y). Verify whether T is non singular. Also find its inverse. (07 Marks)
- Find all invariant subspaces of $A = \begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix}$ viewed as an operator on \mathbb{R}^2 . 6
 - Determine all possible Jordan canonical forms J for a linear operator T:V -> V whose characteristic polynomial $\Delta T = (t-2)^5$ and whose minimal polynomial $m(t) = (t-2)^2$.

- Find a least squares solution of the inconsistent system $\Delta X = b$ for $\Delta = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$, $b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$.
- Define an inner product space. Give one example. If V is an inner product space, then prove 7 that for any vectors α , β in $V \|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$.
 - Apply the Gram-Schmidt orthogonalization process to find an orthogonal basis and then an orthonormal basis for the subspace of \tilde{U} of R^4 spanned by $v_1 = (1, 1, 1, 1), v_2 = (1, 2, 4, 5),$ $v_3 = (1, -3, -4, -2).$ (07 Marks)
 - Find aQR factorization of $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ (07 Marks)
- Find the maximum and minimum value of $Q(x) = 9x_1^2 + 4x_2^2 + 3x_3^2$ subject to the constraint 8
 - Make a change of variable x = py that transforms the quadratic form $x_1^2 8x_1x_2 5x_2^2$ into a quadratic form with no cross product term.
 - Find a singular value decomposition of $A = \begin{vmatrix} -2 & 2 \\ 2 & -2 \end{vmatrix}$. (07 Marks)

Intification, appeal to evaluator and/or equations
 ✓

					,	2	(D)2
USN							

08EC046

M.Tech. Degree Examination, Dec.09/Jan.10 Linear Algebra

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

1 a. Find the inverse of the matrix
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{bmatrix}$$
. (06 Marks)

b. Using L-U decomposition method solve the system of equations

$$6x_1 - 2x_2 - 4x_3 + 4x_4 = 2$$

$$3x_1 - 3x_2 - 6x_3 + x_4 = -4$$

$$-12x_1 + 8x_2 + 21x_3 - 8x_4 = 8$$

$$-6x_1 - 10x_3 + 7x_4 = 43$$

(08 Marks) .

c. Solve for the system of linear equations

$$x_1 - 2x_2 + x_3 = 0$$

 $2x_2 - 8x_3 = 8$
 $-4x_1 + 5x_2 + 9x_3 = -9$.

(06 Marks)

2 a. Find the matrix 'P' which diagonalizes the matrix $A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$. Verify $P^{-1}AP = D$ where 'D' is a diagonal matrix, hence find A^6 .

b. Find the singular value decomposition of $A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$. (10 Marks)

- 3 a. If V is an inner product space, then prove that for any vector α , β in V and any scalar C.
 - i) $\|c\alpha\| = |c| \|\alpha\|$
 - ii) $\|\alpha\| > 0$ for $\alpha \neq 0$
 - iii) $|(\alpha/\beta)| \le ||\alpha|| ||\beta||$

iv)
$$\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$$
. (06 Marks)

- p. Prove that every finite dimensional inner product space has an orthonormal basis. (04 Marks)
- c. If V is an inner product space and β₁, β₂.... β_n be any independent vector in V, then prove that it is possible to construct orthogonal vectors α₁, α₂.... α_n in V such that for each k = 1, 2, ...n the set (α₁.....α_k) is a basis for the subspace spanned by β₁....β_k. (10 Marks)
- 4 a. Construct a spectral decomposition of the matrix A that has orthogonal diagonalization.

$$A = \begin{bmatrix} 7 & 2 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{\sqrt{5}}} & -\frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{\sqrt{5}}} & \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 8 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{\sqrt{5}}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}.$$
 (06 Marks)

- b. Convert the quadratic form $Q(x) = x_1^2 8x_1 x_2 5x_2^2$ into quadratic form with no cross product terms.
- c. Find the maximum and minimum values of $Q(x) = 9x_1^2 + 4x_2^2 + 3x_3^2$ subject to the constraint $X^TX = 1$.

- a. Let V be a n-dimensional vector space over the field F and W-an m-dimensional vector space over F. Let B and B' be ordered bases for V and W. For each linear transformation T:V → W show that there is a m x n matrix A such that [T_α]_{B'} A[α]_B.
 (96 Marks)
 - b. Find the co-ordinates of (2, 3, 4, -1) relative to the ordered basis $B = \{(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1), (1, 0, 0, 0) \text{ for } \mathbb{V}_4.$ (06 Marks)
 - c. If U and W are two sub spaces of a finite dimensional vector space V, then dim (U + W) = dim U + dim W dim (U \cap \text{V}). (08 Marks)
- 6 a. Define $T:V_3 \to V_2$ by the rule $T(x_1, x_2, x_3) = (x_1, -x_2, x_1 + x_3)$. Show that this is a linear map.
 - b. Given a matrix $A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 1 & 0 \end{bmatrix}$. Determine the linear transformation $T:V_3(\mathbb{R}) \to V_2(\mathbb{R})$

relative to the basis B1 and B2 given by

- i) $B_1 = \{(1 \ 1 \ 1) \ (1 \ 2 \ 3) \ (1 \ 0 \ 0)\}$ $B_2 = \{(1 \ 1) \ (1 \ -1)\}.$
- ii) B₁ and B₂ are standard basis of V₃(R) and V₂(R) respectively. (10 Mar¹
 c. Let T₁ and T₂ be linear operations on R² to R² defined as follows:
- C. Let T_1 and T_2 be linear operations on K to K defined as follows: $T_1(x_1, x_2) = (x_2, x_1); T_2(x_1, x_2) = (x_1, 0), \text{ show that } T_1 \text{ and } T_2 \text{ are not commutative.}$ (04 Marks
- 7 a. If Tis a linear transformation from V into W where V and W are vector spaces over the field F, and V is finite dimensional, then prove that rank (T) + nullity (T) = dim V. (08 Marks)
 - b. Let T be an invertible linear transformation on vector space V(F). Then show that $T^{-1}T = TT^{-1} = I$ (96 Marks)
 - c. Let 'f' be a linear functional on a vector space V(F), then prove the following:
 - i) f(0) = 0 where '0' on LHS is zero vector of V and '0' on RHS is zero element of F
 - ii) $f(-\alpha) = -f(\alpha) \ \forall \ \alpha \in V.$ (06 Marks)
- 8 a. Find the least square solution of AX = B for A = $\begin{bmatrix} 1 & 3 & 5 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 3 & 3 \end{bmatrix}$ B = $\begin{bmatrix} 3 \\ 5 \\ 7 \\ -3 \end{bmatrix}$. (04 Marks)
 - b. Let W be a finite dimensional subspace of an inner product space V and let E be the orthogonal projection of V on W. Then prove that E is an idempotent linear transformation of V onto W, W^{\perp} is the null space of E and $V = W \oplus W^{\perp}$. (06 Marks)
 - c. Let V be a n-dimensional vector space and let W be m-dimensional vector space over F. Show that the space $\bot(V, W)$ of linear transformation has the dimension mn. (10 Marks)

* * * * *

M.Tech. Degree Examination, May/June 2010 Linear Algebra

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

Solve the system of equations

$$v - 4z = 8$$
.

$$y-4z=8$$
, $2x-3y+4z=1$, $5x-8y+7z=1$

$$5x - 8y + 7z = 1$$

(06 Marks)

Find the LU - factorization of the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 3 \\ -3 & -10 & 2 \end{bmatrix}.$$

(07 Marks)

Let v be a vector space over the field F. If S is any subset of v, then show that $S^{\circ} = [L(s)]^{\circ}$. (07 Marks)

Find the inverse of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -4 \\ -1 & -1 & 5 \\ 2 & 7 & -3 \end{bmatrix}$$

(06 Marks)

b. Diagonalise the matrix $B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.

(07 Marks)

Determine the scalar K such that $(KA)^{T}(KA) = 1$,

where
$$A = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$
. Is the value unique?

(07 Marks)

Let U and V be vector spaces over the field F. Let $\{v_1, v_2, \ldots, v_n\}$ be a basis of V and let 3 $u_1,\,u_2,....u_n$ be any vectors. Then prove that there exists a unique linear mapping $T:V\to U$ (06 Marks) such that $T(V_i) = u_i$.

b. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by T(x,y,z) = (x+2y-z, y+z, x+y-2z)Find a basis and dimension of i) the image of T ii) the kernel of T.

Let T be a linear operator on R^3 defined by T(x,y,z) = (2x, 4x - y, 2x + 3y - z)

Show that T is invertible i)

Find the formulae for T^{-1} and T^2 . ii)

(07 Marks)

1 of 2

eal to evaluator and for equations written eg., 42+8 nulsorily draw diagonal cross lines on the remaining

Important Note 11 On completing your answ

Any revealing of identifica

4 a. Given a symmetric matrix
$$A = \begin{bmatrix} 0 & 0 & -2 \\ 0 & -2 & 0 \\ -2 & 0 & 3 \end{bmatrix}$$
. Diagonalise this.

b. Find the QR factorization of the matrix
$$A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$
 (10 Marks)

5 a. Let V(F) be a finite dimensional vector space and U₁ and U₂ be the two subspaces of V(F). If V(F) is the direct sum of U₁ and U₂ then prove that Dim V = dim U₁ + dim U₂. (10 Marks)

b. Let
$$A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$
.

Find the characteristic polynomial and minimal polynomial of this.

(10 Marks)

- 6 a. Find the maximum and minimum values of $Q(x) = 9x_1^2 + 4x_2^2 + 3x_3^2$, subjected to the constraint $X^T X = 1$.
 - b. Determine all the possible Jordan's canonical forms of a matrix of order 6 whose minimal polynomial is $m(\lambda) = (\lambda 2)^2$. (10 Marks)
- 7 a. Find the singular value decomposition of matrix $\Lambda = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$. (10 Marks)
 - b. What are he generalized eigen vectors? Find the eigen vectors and the Jordan form of

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 (10 Marks)

- 8 a. Determine the invariant subspaces of $A = \begin{bmatrix} 2 & -4 \\ 5 & -2 \end{bmatrix}$ viewed as linear operator on i) IR² ii) C².
 - b. By using the orthogonal projection determine the least square solution to this system of equations Ax = b where

$$A = \begin{bmatrix} 1 & -6 \\ 1_{\bullet} & -2 \\ 1 & 1 \\ 1 & 7 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 6 \end{bmatrix}.$$
 (10 Marks)

* * * * *